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ABSTRACT 

Communications satellite system architecture trades traditionally only consider the cost 

per unit of capacity provided. This selection method ignores the other requirements with 

which the system architectures were designed, and that are critical to providing a 

capability to the warfighter. A survey of communications satellite systems identified five 

common attributes that are incorporated in the design process: communications capacity, 

access, interoperability, commandability, and information assurance and protection. A 

mathematical model was implemented to enable the analysis of communications satellite 

system architectures based on multiple system attributes. Utilization of the model in a 

hypothetical test case demonstrated how variations in key performance attributes 

influences the choice of the preferred system in a selection process. 



 vi 

THIS PAGE INTENTIONALLY LEFT BLANK 



 vii 

TABLE OF CONTENTS 

I. INTRODUCTION........................................................................................................1 
A. BACKGROUND ..............................................................................................1 
B. PURPOSE .........................................................................................................2 
C. RESEARCH QUESTIONS .............................................................................2 
D. SCOPE AND METHODOLOGY ..................................................................2 
E. BENEFITS OF THIS STUDY ........................................................................2 

II. MODEL SELECTION ................................................................................................3 
A. INTRODUCTION............................................................................................3 
B. IDENTIFICATION OF KEY SYSTEM ARCHITECTURE 

ATTRIBUTES ..................................................................................................3 
1. Survey of Common Technical Performance Measures, Key 

Performance Parameters, and System Requirements ......................3 
a. Communications Capacity ........................................................3 
b. Access ........................................................................................4 
c. Interoperability ..........................................................................4 
d. Commandability ........................................................................5 
e. Information Assurance and Protection ....................................5 

2. Selection of Key Quantifiable System Architecture Attributes .......5 
C. SELECTION OF A MATHEMATICAL MODEL TO ASSESS 

SYSTEM ARCHITECTURES .......................................................................7 
1. Summary of Potential Mathematical Model Forms .........................7 
2. Selection of Mathematical Model .......................................................9 

a. Model Limitation .....................................................................10 
3. Description of the mathematical model ...........................................11 

a. Model Inputs ...........................................................................11 
b. Model Output...........................................................................12 
c. Model Calculations .................................................................13 

D. CHAPTER SUMMARY ................................................................................15 

III. USE OF THE MATHEMATICAL MODEL ..........................................................17 
A. DEFINITION OF THE SET OF KEY ATTRIBUTES FOR THE 

SATELLITE COMMUNICATIONS SYSTEM ARCHITECTURE ........17 
1. Communications Capacity ................................................................18 
2. Nominal Case Access .........................................................................18 
3. Stressed Case Access ..........................................................................18 
4. Interoperability ..................................................................................18 
5. Commandability .................................................................................19 
6. Information Protection ......................................................................19 
7. Initial Operational Capability Date .................................................19 
8. Full Operational Capability Date .....................................................20 
9. Constellation Restoration Time ........................................................20 
10. Launch Vehicle Compatibility ..........................................................20 



 viii 

11. Anti-Jam Capability Level ................................................................20 
B. DEFINITION OF A SET OF ARCHITECTURES ....................................21 
C. EVALUATION OF A SET OF ARCHITECTURES USING THE 

MATHEMATICAL MODEL .......................................................................21 
D. DISCUSSION OF RESULTS .......................................................................28 

1. Comparison to Cost per Capacity Approach ..................................29 
2. Threshold Only Concept Addition ...................................................30 
3. Performance Score and Cost Comparisons .....................................31 
4. Performance Score and Cost Variation ...........................................32 
5. Attribute Weighting Effect ................................................................33 
6. Variation of the FOC Period .............................................................33 
7. Range of Variation of the Cost .........................................................33 

E. CHAPTER SUMMARY ................................................................................35 

IV. CONCLUSIONS AND RECOMMENDATIONS ...................................................37 
A. CONCLUSIONS AND RECOMMENDATIONS .......................................37 
B. AREAS FOR FURTHER RESEARCH .......................................................39 

LIST OF REFERENCES ......................................................................................................41 

INITIAL DISTRIBUTION LIST .........................................................................................43 

 
 



 ix 

LIST OF FIGURES 

Figure 1. Cost per OMOE per year at FOC Summary. ...................................................31 
 
  



 x 

THIS PAGE INTENTIONALLY LEFT BLANK 



 xi 

LIST OF TABLES 

Table 1. Mathematical Model Weighting Inputs. ..........................................................22 
Table 2. Mathematical Model Weighting Check Error..................................................22 
Table 3. Mathematical Model Threshold and Performance Inputs. ...............................23 
Table 4. Mathematical Model Performance Inputs. .......................................................24 
Table 5. Mathematical Model Threshold Error Check Intermediate Calculation. .........24 
Table 6. Mathematical Model Input Threshold Check Validation Example. ................24 
Table 7. Mathematical Model Threshold Error Check Intermediate Calculation 

Validation Example. ........................................................................................25 
Table 8. Mathematical Model Cost and FOC Duration Inputs. .....................................25 
Table 9. Raw Performance Calculation Results. ............................................................26 
Table 10. Corrected Performance Score Calculation Results. .........................................26 
Table 11. Weighted Performance Scores and OMOE Calculation Results. ....................27 
Table 12. Cost per OMOE per year at FOC Calculation and Ranking Results. ..............27 
Table 13. Cost per OMOE per year at FOC Calculation and Updated Ranking 

Results. .............................................................................................................28 
Table 14. Cost per Capacity Calculation and Ranking Results. ......................................30 
Table 15. Cost per OMOE per year at FOC Calculation and Ranking Results with 

Equally Weighted Performance Attributes. .....................................................33 
Table 16. Revised Ranking With a Variable FOC Period. ..............................................34 
Table 17. Revised Ranking With a Reduced Cost Variation Range. ...............................34 
 



 xii 

THIS PAGE INTENTIONALLY LEFT BLANK 



 xiii 

EXECUTIVE SUMMARY 

Communications satellite system architecture trades traditionally consider only the cost 

per unit of capacity provided. But a successful architecture has many critical attributes 

that meet documented and validated requirements.  Making a decision based solely on 

cost per unit of capacity provided ignores critical requirements essential to providing a 

capability to the warfighter. To ensure these requirements are considered during trades, a 

method to account for additional system attributes in the execution of architecture trades 

was implemented. 

A survey of communications satellites systems identified five common attributes 

that are incorporated in the system design process. These are communications capacity, 

access, interoperability, commandability, and information assurance and protection. 

Additional system specific attributes can be based on Technical Performance Measures 

(TPMs) and Key Performance Parameters (KPPs) for the actual system solutions to be 

analyzed. 

A mathematical model was implemented to enable the analysis of 

communications satellite system architectures based on the performance of multiple 

system attributes. The mathematical model supports any number of attributes desired for 

analysis. All selected attributes are allowed to have a different relative importance based 

on the preference of the stakeholders. Utilization of the model in a hypothetical case 

indicated that a system selection considering additional key performance attributes can be 

different from the traditional solution of narrowly focusing on one parameter.  

Understanding the reasoning behind the difference will help ensure the best system is 

selected. 
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I. INTRODUCTION 

A. BACKGROUND 

Satellite-based communications provide a crucial capability to the U.S. military in 

the execution of their missions. The need for a worldwide exchange of voice, video, and 

data during a military operation has resulted in the development and operation of satellite 

systems that provide a global communication capability. The operational benefits 

afforded by satellite-based communications were recognized from the beginning of the 

U.S. space program and continues to remain a fundamental mission area (Martin, 2001). 

Satellite communications enable a level of pervasive coverage that is not possible 

by any other means. Satellite communications also provide coverage in remote areas that 

lack infrastructure, such as at sea, or in developed areas where communications 

infrastructure has been incapacitated by natural disasters, war, or other extreme 

circumstances. Additionally, demand for communications throughput continues to grow 

as more data is exchanged between operators and sensors in a theater of engagement and 

remotely located analysts, planners, and commanders. 

In order to efficiently meet communications throughput demand, potential system 

architecture solutions are developed and then analyzed in trade studies. As the system 

designs are generated all requirements are included and balanced to meet specified needs. 

Traditionally the selection of a communications satellites systems architecture solution is 

based upon the evaluation of a single criterion: the cost per unit of system communication 

capacity, or throughput. This approach comes from the requirement to be compliant with 

the DoD 5000 Series Policy regarding cost analysis coupled with a comparison to 

commercial options (DoD Directive 5000.01, 2007 and DoD Instruction 5000.02, 2008]. 

Communications satellite system architecture selection based solely on the cost 

per unit of system communication capacity clearly omits documented and validated 

requirements from the decision making process. Examples of these requirements may 

include architecture robustness, the ability of the system design to operate in a variety of 

situations; and interoperability with other existing or planned equipment, tactics, 
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procedures, and systems. Thus, a method to assess communications satellite system 

architectures based on multiple attributes simultaneously is desired.  

B. PURPOSE 

The purpose of this thesis was to implement a mathematical model for assessing 

communications satellite system architectures based on the satisfaction of multiple 

performance attributes.   

C. RESEARCH QUESTIONS 

The following three questions are addressed. 

1. What are the key quantifiable architectural attributes that contribute to 

meeting the users’ requirements of a communications satellite? 

2. What is an appropriate mathematical model for evaluating communications 

satellite architectures? 

3. How can such a mathematical model be applied to the assessment of a 

communications satellite architecture? 

D. SCOPE AND METHODOLOGY 

The thesis proposes a methodology that can be utilized to perform system 

architecture trades on DoD satellite communications architectures that require multiple 

satellites to meet global communications needs.  First, key communications satellite 

system architecture attributes were indentified. Next, a mathematical model to compare 

system architecture solutions was presented. Finally, the mathematical model was applied 

to evaluate a set of hypothetical communications satellite system architectures. 

E. BENEFITS OF THIS STUDY 

The outcome of this research could be used to support communications satellite 

system architecture trades. The application of this model may allow decision makers to 

be more informed during system architecture selection than if relying on the traditional 

approach that considers only system communications capacity and cost.  
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II. MODEL SELECTION 

A. INTRODUCTION 

This chapter discusses the mathematical model to be utilized to conduct trade 

studies on candidate communications satellite architectures. First, a survey of candidate 

system parameters upon which to base the mathematical model was conducted. Next, 

potential mathematical models were considered. Finally, a mathematic model was 

presented to assess the performance of the communications satellite system architectures. 

B. IDENTIFICATION OF KEY SYSTEM ARCHITECTURE ATTRIBUTES 

1. Survey of Common Technical Performance Measures, Key 
Performance Parameters, and System Requirements 

A survey of open source literature identified key architecture attributes of military 

satellite communications systems. This set of attributes is not specific to an existing or 

planned satellite program, but is intended to be representative of multiple system design 

options. Some of the attributes may be applicable to non-military satellite communication 

systems, and should be highlighted when considering commercial solutions that support 

the current national space policy to “pursue potential opportunities for transferring 

routine, operational space functions to the commercial space sector where beneficial and 

cost-effective, except where the government has legal, security, or safety needs that 

would preclude commercialization” (Office of the President of the United States, 2010, p. 

14). 

The five key attributes are: communications capacity, access, interoperability, 

commandability, and information assurance and protection. The descriptions of these 

attributes follow. 

a. Communications Capacity 

Capacity is the most fundamental measure for a communications system 

and is common to both commercial and military satellite systems. This attribute measures 

the amount of data communicated per unit of time (Gigabits per second (Gbps) for 
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example). Alternatively, this parameter can also be expressed as the available frequency 

bandwidth per unit time. The frequency metric may be more useful if it is desirable to 

normalize a performance measure that is independent of signal modulation schemes. For 

the purposes of the mathematical model presented in this thesis, the choices of units for 

capacity are left to the expert analyzing the system. The only requirement is that the 

method utilized to predict capacity is applied in the same manner to all system solutions 

being considered (Kakavas, Ha, & Garcia, 1998, GAO 94–48). 

b. Access 

Access is the ability of the system to provide communication in a defined 

location when needed. The coverage area defines the global locations in which 

communications are expected to be provided. Commercial satellite communications 

systems have coverage areas generally limited to population centers to ensure sufficient 

revenue from operating the systems. Population centers are quite stable, essentially fixed 

over 5–15 years of a satellite’s operational life. Military needs require communications 

capability in remote areas, be it sparsely inhabited land areas or open ocean. Additionally, 

the areas to be covered often change, whether simply from the movement of units or from 

new areas of operation; these new operational areas can arise from training operations, 

disaster relief, and armed conflict. The “when needed” part of access is not only the 

expected operational lifetime of the system, but also incorporates the need for a satellite 

system architecture to provide communications coverage in both nominal and stressed 

conditions. A nominal operating condition would include a complete satellite 

constellation supporting missions with concentrations and locations of users in 

accordance with system design scenarios. A stressed condition could be the loss of a 

satellite due to circumstances such as system failure, the inability to secure a commercial 

lease, or a distribution of users that was not envisioned in the system design process 

(Bradley 1997, Kakavas, Ha, & Garcia, 1998, GAO/NSIAD-93–216, GAO 94–48). 

c. Interoperability 

Interoperability is a capability requirement for DoD systems. For satellite 

communications architectures this includes the system’s ability to work with both 
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existing and planned terminals. The set of terminals supported is likely to include all U.S. 

military services and allied systems used in a joint international effort. Quantifying the 

number of specified user terminals that a system architecture can support is one method 

to measure interoperability. Other interoperability metrics may also be defined specific to 

a system requirements set (Wickline 1998, pp. 5–10). 

d. Commandability 

Commandability refers to the operator’s ability to command the satellite 

per the system requirements. Commandability may be comprised of a number of factors 

including the level of protection of ground operations centers against threats both 

manmade and natural, the time necessary to switch between system configurations, 

autonomous operations, and system level planning functions (Bradley 1997, GAO 94–

48).The ability of the system to comply with these requirements defines the performance 

for this attribute. 

e. Information Assurance and Protection 

The policy, requirements, and implementation of information assurance 

and information protection will be defined in the satellite system requirements 

documentation (DoD Instruction 5000.02, 2008). The ability of the system to comply 

with these requirements defines the performance for this attribute. The policies and 

regulations continue to evolve with the Defense Information Systems Agency (DISA) as 

the lead for the DoD. As system architectures are traded, it is important to consider not 

only compliance of the system at the time that the trades are executed, but also the ability 

of the system to evolve and adapt over its lifetime. 

2. Selection of Key Quantifiable System Architecture Attributes 

Since the purpose of the model is to consider attributes that contribute to meeting 

vetted requirements, these five attributes appear to be at the core of communications 

systems architectures and should be included in the model as applicable.  Thus, it is not 

necessary to use all five of the representative attributes in the mathematical model, but 

only those with significant requirements relevance. Of the five key attributes above, only 
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the communications capacity should be deemed required in the mathematical model to 

maintain traceability to the traditional modeling approach. 

Beyond these five key attributes, there may be other requirements that are specific 

the communications satellite system that lead to the inclusion of additional attributes in 

the mathematical model. Key Performance Parameters (KPPs), Technical Performance 

Measures (TPMs), and other system requirements should be assessed for relevance and 

utilized in the model as applicable. KPPs are a minimum set of performance parameters 

that guide a system development effort. KPPs are identified by users, approved by the 

requirements authority, and contained in the system Capability Description Document 

(CDD) (DoD Instruction 5000.02, 2008). TPMs are quantitative values that describe 

system performance (planned, predicted, or measured), and are often related to KPPs 

(Blanchard & Fabrycky, 2006, pp. 75–78; The Defense Acquisition Guidebook, 

http://at.dod.mil/docs/DefenseAcquisitionGuidebook.pdf, TPM definition and use).  

The following three considerations should be employed in the selection of the key 

system architecture attributes for incorporation into the mathematical model. 

First, a key attribute used in the mathematical model must be quantifiable with 

distinctly defined threshold, or minimum acceptable, and objective, or desired, levels. 

Qualitative assessments can be translated to numeric values; however, qualitative 

assessments should be avoided when possible. If the threshold and objective values are 

the same, or if all satellite system architectures provide the same level of performance, 

then the attribute will not be useful for distinguishing between architecture solutions, and 

therefore should not be included in the analysis.  

Second, attributes that have a range of levels achievable between threshold and 

objective levels should be utilized in the mathematical model whenever possible. The 

range of capability will enable the mathematical model to more readily rank the various 

architectures. Extensive use of attributes that only meet or fail to meet objective 

performance may result in grouping of architectures into two categories. Attributes that 

do not have a range of levels achievable between the threshold and objective levels are 

discouraged but not precluded because there may be situations in which this ability to 
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provide objective performance is highly desirable. Examples may include an ability to 

survive a threat, or compatibility with other existing systems. 

Third, attributes should be unique and not derived from each other. This can be 

done by avoiding the utilization of both primary and derived requirements. An example 

of a poor choice could be selecting both the Equivalent Isotropically Radiated Power 

(EIRP) and link data rate.  Because the data rate is a function of the available power 

(Pritchard, Suyderhoud, & Nelson, 1993), they are interdependent. Remaining focused on 

high level system attributes avoids including dependent relationships in the model. 

C. SELECTION OF A MATHEMATICAL MODEL TO ASSESS SYSTEM 
ARCHITECTURES 

The mathematical model selected to assess system architectures is intended to 

replace the existing approach of calculating a cost per unit capacity. In order to have the 

new model accepted as a replacement it must incorporate the following elements. First, 

the model must be able to calculate a cost per capability provided to be compliant with 

DoD 5000 that requires system trades to be conducted in consideration of cost. Second, 

the model must be understandable by decision makers who use the data from the current 

cost per capacity method. To this end, it is desirable to have a method that can replicate 

the results of the traditional model for comparison. It is also necessary for the model 

approach and results to be clearly explainable to stakeholders or else the model will not 

be used. 

1. Summary of Potential Mathematical Model Forms 

Once a selection of key attributes is made it is necessary to have a methodology to 

implement for the assessment of the system architectures. A mathematical model 

incorporates multiple attributes and avoids subjectivity by quantifying system 

performance. It is expected that attributes used in the assessment of the architectures will 

have varying levels of importance. When system architecture trades are conducted on the 

system capacity attribute alone, the decision making process does not benefit from the 

careful consideration of other requirements-driven system architecture attributes.  
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One mathematical model that can be utilized in this analysis is termed the 

Weighting Method. In this approach, the attributes are first assigned a weight, with the 

sum of all the weights equal to one. A performance rating is then calculated for each 

attribute and the product of the weight and performance rating is computed. Finally, the 

sum of all weight and performance products for each communication satellite system 

architecture alternative is calculated. The resultant sum, or score, can be utilized to 

compare the scores from other communication satellite system architectures. The system 

architecture with the highest score is the most preferred (Blanchard & Fabrycky, 2006, 

pp. 178–180). 

In a specific application of the Weighting Method, the attribute weights are given 

by the stakeholders. Next, the performance scores are assessed for each attribute and 

system based on the achieved performance normalized to the range defined by the 

threshold and objective levels. Specifically, the score achieved is a value between 0 and 

1, where 0 represents achieving only the threshold level and 1 represents achieving the 

objective level. If a system under consideration does not meet the threshold performance 

value for an attribute, then a new threshold value must be specified and the model must 

be updated with the new value. Only when all systems meet the threshold for every key 

attribute can we ensure all systems are being assessed equally. The highest performance 

score is 1.0. No additional benefit is assessed for a system that exceeds the objective 

performance level. An overall score for each system architecture is calculated using the 

sum the products of the weight and score for each attribute. This value is called the 

Overall Measure Of Effectiveness (OMOE). The system selection is based on the highest 

OMOE (Laverghetta, 1998; Hootman & Whitcomb, 2005). This approach will be referred 

to as the OMOE Method. 

Another mathematical modeling approach is the Analytical Hierarchy Process 

(AHP) developed by Thomas Saaty in the 1970s (Saaty, 1980). This process is another 

application of the Weighting Method, with the focus on the computation of a 

performance rating. Calculation of the performance rating is accomplished by comparing 

the performance between every system architecture pair for each performance attribute to 

determine which architecture is preferred and how strongly. The assessment of preference 
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can be done by group or individually. The AHP process is subjective and can be time 

consuming since the number of assessments grows geometrically as the product of the 

number of systems assessed and the number of key attributes selected (Ragsdale, 2008, 

pp. 777–784; Kaymaz & Diri, 2008, Tsagdis, 2008). 

Value Engineering is a technique that can be utilized to assess projects and 

identify opportunities for cost savings and cost avoidance while optimizing performance 

and productivity in a wide variety of applications including hardware, software, and 

infrastructure projects (Mandelbaum & Reed, 2006). Value Engineering is attributed to 

General Electric around 1948 when a process initially named Value Analysis was 

developed and applied to control production costs (Miles & Reger, 1958). This process 

has been updated over time and included in the United States Office of Management and 

Budget Circular A131 (Office of Management and Budget, 1993). The purpose of the 

Value Engineering technique is to provide best value system solution to both the 

customer and producer. The key principle of the Value Engineering technique is to 

consider all decisions and opportunities in light of the total system cost. The total system 

cost includes not only the cost to acquire the system that include development, 

manufacturing, and materials, but also costs to field, operate, maintain, upgrade, and 

dispose of the system. This approach can be used to account for the total cost of obtaining 

a level of performance that exceeds the threshold requirement as not every increase in 

capability is worth the cost to achieve the benefit. 

2. Selection of Mathematical Model 

The traditional system architecture selection process is a comparison of the cost 

per unit of system communication capacity. While this approach provides results that are 

easy to understand, it can also result in an architecture choice that ignores variation in 

other significant system requirements. Examples of key requirements that are ignored by 

this approach include, but are not limited to: access; interoperability; commandability; 

and information assurance and protection. In the traditional approach there is no way to 

consider tradeoffs between capacity and the other key system requirements. This could 

result in the preference and selection of an architecture that has significantly more 
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capacity in selected geographic areas over one that provides more uniform global 

coverage capability. Another example could be the selection of a system architecture that 

provides marginally more capacity over another that has more capability for information 

assurance and protection. 

A mathematical model that combines the principles of the Value Engineering 

technique and OMOE Method has been selected for use. Specifically, calculating the total 

system cost per OMOE per number of years at Full Operational Capability (FOC) for 

each system architecture. Including the number of years at FOC is critical for comparing 

system architecture solutions that may operate for different periods of time. This 

mathematical model meets the criteria presented in II.A.2 above. Use of Value 

Engineering technique establishes that the total system cost be utilized in the system 

architecture trades. The OMOE Method can be simplified to consider only the system 

capacity, or be expanded to incorporate any number of key attributes. The overall method 

that defines a cost per OMOE results in an understandable decision making approach 

where the lowest cost per OMOE solution is preferred. 

The AHP method was not selected due to its complexity and inherent difficulty in 

tracing results back to cost per unit of capacity (Ragsdale, 2008, pp. 777–784; Kaymaz & 

Diri, 2008; Tsagdis, 2008). The AHP method could be still be utilized to determine the 

weighting factors of the attribute; however, that choice was omitted in this assessment 

approach. 

a. Model Limitation 

There is a limitation with the selected approach in the rare instance that 

one of the system architectures only provides the threshold performance levels for all key 

attributes. In this instance the OMOE would be zero, resulting in a divide by zero error in 

the computation of the final cost per capability calculation. To overcome this issue it is 

necessary to adjust the OMOE of the threshold only system to make it greater than zero.  

It is suggested that initially the OMOE for the threshold-only system be 

set to half that of the next higher OMOE. Further investigation of the other system 

architectures will need to be conducted to determine if this is an appropriate adjustment. 
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For example, if the system with the next higher OMOE has only one of 10 key attributes 

that exceeds threshold performance by a small amount, then  setting the threshold-only 

OMOE to half is appropriate. However, if the next higher OMOE comes from a system 

that has one or more of 10 key attributes that exceeds threshold performance by a 

significant amount then the OMOE for the threshold only system architecture should be 

less than half. A sensitivity analysis of the system trade off results will be necessary to 

assess the effects of the OMOE adjustment to the threshold only system.  

3. Description of the mathematical model 

Now that a mathematical model has been selected, the model will be described in 

greater detail. The discussion will first cover the inputs, followed by the output, and 

finally the mathematical operations that transforms the inputs to the output. 

a. Model Inputs 

The inputs to the mathematical model include the following six 

components: 

(1)  The key attributes used in the determining of the OMOE score. 

Quantifiable values for each attribute must be available for each system architecture 

being traded. 

(2) Threshold and objective performance levels for each attribute utilized. 

These requirements must be the same for every system analyzed by the model to avoid 

biasing results that would lead to unfair comparisons. All systems must also provide at 

least threshold performance capability for every key attribute. A conditional check of the 

inputs with the modeling tool can be used to identify if there are any violations of the 

threshold. If any system architecture requires a waiver to a threshold performance level a 

waiver request will be processed through the program’s formal system engineering 

process. If the waiver is accepted it must be applied to all communication satellite 

architectures and the new threshold value must be incorporated in the model. If the 

waiver is not accepted then the system or systems that do not meet the threshold level 

cannot be assessed using this method. 
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(3) Weighting factors for each attribute. The weights are determined by the 

stakeholders. The only requirement is the sum of the attribute weights must be equal to 

one.  

(4) Performance levels achieved for each attribute of each system. When 

recording the performance levels it is important to be sure that units are consistent with 

those used for the threshold and objective performance levels. Mixing units will result in 

erroneous results. 

(5) Total Cost for each communications satellite system architecture being 

analyzed. The methodology for computing total costs must be consistent across all 

systems. One might consider utilizing the time value of money to normalize varying 

funding profiles over multiple years. Utilizing the life cycle cost of the systems is 

encouraged as long as the computation across all systems is equivalent. For example, 

when comparing the expansion of an existing system to the development of a new system 

it may be necessary to exclude from the life cycle calculation funds that have previously 

been expended, or that were expended by other groups, such as venture capital.  

(6) Time, in years, at full operational capability (FOC). This measure is necessary 

to normalize across potentially different time periods of FOC. The model will neglect to 

provide a value for any performance provided as the system architecture ramps up to 

FOC, or ramps down as the system is retired. Since the expectation is to provide full 

capability it is appropriate to neglect any partial capability for this trade. 

b. Model Output 

The output of the mathematical model is the “Cost per Year per OMOE” 

for each communications satellite system architecture evaluated. The lower the cost per 

year per OMOE per year, the more preferred the system architecture is. Final selection of 

the appropriate system architecture by decision makers is expected to be based on more 

than just the results of this mathematical model. Other factors outside of the model will 

need to be considered in the final satellite system architecture selection process.  Such 

factors may include budget constraints, rapidly evolving threats and needs, and the level 

of program risk. However, the model output will provide objective data regarding 
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requirements satisfaction, which will help decision makers make an informed selection 

regarding which system architecture to develop, produce, or maintain. 

Additional post processing of the cost per year per OMOE result can be 

performed for the display of the results or sensitivity analysis. The data post processing 

efforts are defined by the desires and expectations of the decision makers utilizing the 

data. The development of standard post processing efforts is beyond the scope of this 

thesis. 

c. Model Calculations 

The following is a description of how the inputs are transformed into an 

output in the mathematical model. The approach described can easily be implemented in 

Microsoft Excel, or any other calculation software. The number of key attributes, n, is a 

positive integer.  For making a comparison, the number of system architectures is 

necessarily an integer greater than one. The steps demonstrated are for a given 

architecture and must be repeated for every system architecture under consideration. 

The first step is to calculate a Raw Score that reflects the level of achieved 

performance for each key attribute. This is done by computing the ratio of achieved 

performance to the range as shown in Equation 1. 

 

 Achieved Performance Threshold RequirementRaw Score
Objective Requirement Threshold Requirement

−
=

−
 (1) 

 

The achieved performance of all key attributes must be equal to or greater 

than the threshold performance level. As mentioned earlier, a system with an achieved 

performance below the threshold will only be considered if the decision maker sets a new 

threshold level for all architectures and the model is updated with the new threshold 

level.  Otherwise, the architecture will be omitted from consideration. 

Next, the Raw Score must be corrected so that the maximum value of the 

attribute Score is 1.0. This discourages obtaining greater than objective level performance 
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at the expense of other key attributes. Any Raw Score values that Equation 1 calculates 

higher than 1.0 are automatically assigned a value of 1.0 and represents the Corrected 

Score that is used for future calculations. 

Once all Raw Score values are calculated and comply with the two rules, 

the Weighted Score for each attribute and system architecture is computed. This is done 

by calculating the product of the Corrected Performance Score and the input attribute 

weighting as shown in Equation 2. 

 

 Weighted Score = Corrected Performance Score Attribute Weight×  (2) 

 

With the Weighted Scores of all key attributes calculated, the OMOE 

score for each system architecture can be computed. For the number of key attributes, n, 

the OMOE score is the sum of all Weighted Scores of the system architecture as shown in 

Equation 3. There is an OMOE score for each system architecture. 

 

 
Number Key Attributes

n
n=1

OMOE Score = Weighted Score∑  (3) 

 

Finally, the cost per year per OMOE is calculated for each 

communications satellite system architecture by dividing the total system architecture 

cost by number of years the system is planned to be FOC and the computed total OMOE 

score. This is shown in Equation 4. The total system cost includes all development, 

acquisition, fielding, operations, maintenance and upgrades, and system disposal costs 

paid by the Government or customer. 

 

 CostCost/year/OMOE
FOC Years OMOE Score

=
×

 (4) 
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D. CHAPTER SUMMARY 

This chapter has presented a survey of candidate system parameters upon which 

to base a mathematical model that can be used to conduct trade studies on candidate 

communications satellite architectures. The five primary key attributes are: 

communication capacity, access, interoperability, commandability, and information 

assurance and protection. Only the capacity attribute should be considered necessary to 

all system architecture trade analyses, due to the commonality with current trade analyses 

and commercial leasing metrics. Including key attributes not identified in the primary list 

are encouraged but must be based on the specific requirements defined for the system and 

may include KPPs, TPMs, and overarching requirements. 

Three mathematical model approaches were discussed. The selected approach is a 

combination of two of them and enables a comparison of the cost for achieved 

performance level. This approach leveraged three mathematical model benefits: 1) the 

ability for stakeholders to weight the relative importance of all key attributes utilized in 

the model; 2) a calculation of raw scores to measure the performance of each key 

attribute across system architectures; and 3) consideration of the total system cost for 

each system architecture. 

The inputs, output, and calculation methodology of the selected mathematical 

model were presented. The output of the mathematical model is a cost per year per 

OMOE score. The OMOE score multiplied by the number of years at Full Operational 

Capability can be considered a unit of effectiveness. The higher the OMOE, the more 

effective the system architecture is at meeting requirement objectives.  The longer a 

system can be at FOC, the more effective the system architecture is at providing 

communications capability. Thus, dividing the real cost of a system by a unit of 

effectiveness generates an “effective cost.” The result is an intuitive metric for decision 

makers to utilize in their system architecture selection. Namely, the most preferred 

system architecture will have the lowest cost per unit of effectiveness. We cannot claim 

“best,” as the decision makers will still have to consider these results in concert with 

other factors that are not quantitatively included in the model, such as how soon a system 
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can be fielded, budget constraints, and overall level of program risk before making a final 

communication satellite system architecture selection. 
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III. USE OF THE MATHEMATICAL MODEL 

A mathematical model for conducting trade studies on candidate communications 

satellite architectures has been presented. In this chapter the mathematical model will be 

exercised to demonstrate the functionality. The satellite systems, requirements, and 

performance inputs used in this chapter are for illustrative purposes only, and do not 

represent real or planned satellite systems.  

The system architecture envisioned in this example is intended to provide 

communications capability world-wide between 65° north and south latitude. The 

planned usage of the communications capability is described in a DoD generated scenario 

that includes details about terminal types, locations, and data needs in both nominal and 

stressed contingencies. This use of a scenario to quantify the capacity provided by the 

satellite communications architecture is the same process utilized traditionally for 

assessing systems. To provide worldwide coverage, the space system envisioned will 

utilize a minimum of four satellites in geosynchronous orbit. There is no restriction on 

the use of more satellites to meet system requirements.  

A. DEFINITION OF THE SET OF KEY ATTRIBUTES FOR THE 
SATELLITE COMMUNICATIONS SYSTEM ARCHITECTURE 

The first steps in creating the mathematical model are to select and weight the key 

attributes of the communications satellite system architecture. There is no upper limit to 

the number of attributes that the model can support; however, the list must be 

manageable and understandable to the stakeholders. For this exercise, all five of the 

primary attributes identified previously will be utilized in conjunction with six additional 

requirements. These attributes along with their threshold and objective values will be 

discussed below.  All attributes are weighted equally, except for Communications 

Capacity and the Full Operational Capability date, which have double the weight of the 

other attributes.  Assigning a different weight to these two attributes demonstrates the 

flexibility the user has in assigning priorities to the attributes under consideration. 
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1. Communications Capacity 

Communications Capacity is the total throughput supported by the system 

architecture in a specified scenario that includes the global types, locations, and data 

needs. The units for this attribute are Gigabits per second (Gbps). The threshold value is 

15 Gbps and the objective value is 50 Gbps. 

2. Nominal Case Access 

The Nominal Case Access attribute represents the percentage of terminals located 

globally that can be supported in the specified scenario that represents expected nominal 

usage. This would include all requirements for both operations and training exercises. 

This attribute is included in addition to the system capacity to limit biasing the 

performance score by choosing to support only a few high capacity terminals and 

abandoning the support of numerous smaller terminals. The units for the attribute are 

percent. The threshold value is 20% and the objective value is 100%. 

3. Stressed Case Access 

The Stressed Case Access attribute represents the percentage of terminals located 

globally that can be supported in a specified scenario that represents expected stressed 

usage. In a stressed situation the layout of terminals is expected to be different, including 

higher concentrations of terminals than the Nominal Case Access model in some 

geographically distinct areas. This attribute is included in addition to the system capacity 

is to limit biasing the performance scores by choosing to support only a few high capacity 

terminals, and abandoning the support of numerous smaller terminals. The units for the 

attribute are percent. The threshold value is 30%, and the objective value is 100%. 

4. Interoperability 

Interoperability quantifies the extent to which different user terminal pairs can 

operate together. System requirements support communication in four distinct frequency 

bands, C, X, Ku, and Ka, for example. Communication between terminals of the same 

frequency band is automatically accomplished; however, it is highly desirable to have the 

ability to have unmatched frequency band terminals interface seamlessly. This means that 
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the satellite converts between bands, for example receiving a C band input from one 

terminal and linking that data stream to a receiving terminal in the Ku band. It is possible 

to support some of this capability on the ground with a multi band terminal, but if the 

functionality can be accommodated on the satellite at a reasonable price this would 

eliminate operations and maintenance constraints and costs to the terminals. This attribute 

is the count of the number of bands that can be converted from one to another. The 

threshold value is 0 and the objective value is 12. This input is an integer value. 

5. Commandability 

The Commandability attribute focuses on the autonomous response of each 

satellite in the constellation by quantifying how long the system will continue to provide 

communication service in the last commanded configuration. The configuration includes 

providing satellite station keeping, beam pointing, bandwidth allocations, and the system 

event logs that can be downloaded when ground control is restored. The threshold value 

is 5 days and the objective value is 20 days. 

6. Information Protection 

The Information Protection attribute will measure compliance with current 

information assurance and information protection policies. Waivers from the list of 

existing policies that must be complied with are possible but must be minimized. This 

attribute will count the number of waivers that must be obtained. The threshold value is 5 

waivers and the objective is 0 waivers. This input is an integer value. 

7. Initial Operational Capability Date 

This attribute tracks when Initial Operational Capability (IOC) is expected to be 

achieved. The threshold value is 2025 and the objective is 2018. This input is an integer 

value. 
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8. Full Operational Capability Date 

This attribute tracks when Full Operational Capability (FOC) is expected to be 

achieved. The threshold value is 2030 and the objective is 2024. This input is an integer 

value. 

9. Constellation Restoration Time 

The Constellation Restoration Time attribute quantifies how long it takes to 

restore FOC when a satellite in the constellation suffers a catastrophic loss. This allows a 

trade of constellation capability based on whether a spare is a) only manufactured and 

launched after a failure occurs; b) manufactured ahead of time and launched after the 

failure occurs; or c) maintained on-orbit and available to be repositioned after the failure 

occurs. The threshold value is 5 years and the objective value is 0.25 years. 

10. Launch Vehicle Compatibility 

This attribute addresses the flexibility in launch vehicles available for use. 

Flexibility in the launch vehicle used can enable a more robust fielding the system in the 

event of any production issues of the launch vehicle. The threshold value is 1 launch 

vehicle and the objective is 3 different launch vehicles. This value is an integer. 

11. Anti-Jam Capability Level 

The Anti-Jam Capability Level attribute indicates the combination of Anti-Jam 

capabilities provided by the communications satellite system architecture. The levels are 

integer values that indicate compliance with a variety of requirement levels including 

interference signals; interference nulling; geolocation identification and reporting; and 

the amount of power margin against an interference beam. Level 1 represents the most 

robust Anti-Jam capability required based on the combined performance of the 

constituent requirements. For example a Level 1 score would incorporate a high level of 

adaptive processing to isolate interference signals, nulling capability for the quantity and 

locations of interference sources, the ability to identify and report the location of 

interference sources to the required accuracy, and the ability to successfully transmit in 

the presence of interference. Level 2 would represent the next best Anti-Jam capability 
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achievement, and so forth to level 5, which would represent the minimum acceptable 

level of Anti-Jam capability. The threshold value is 5 and the objective value is 1. This 

value is an integer. 

B. DEFINITION OF A SET OF ARCHITECTURES 

For this example a set of nine fictitious communications satellite system 

architectures were analyzed. Each architecture represents a concept that meets the 

requirements through a different approach such as would be generated by multiple 

contractors. The range of system performance levels may result from varying:  

complexity and capability of the individual satellites; technology and production 

development times; satellite production rates; and levels of control and autonomy of the 

fielded system.  

As with the key attributes, there is no limit to the number of system architectures 

that can be analyzed by the mathematical model. A set of nine architectures was selected 

to exercise the model in this example. The model and data have been input in a Microsoft 

Excel 2007 Workbook. This exercise is not based on a real system; therefore, values 

assigned for each key attribute were assigned by a random number generator. None of the 

performance inputs were allowed to be below the threshold value. Performance levels 

above the objective value were allowed when appropriate to verify that the Excel model 

properly corrects the attribute scores. Performance above the objective level is not 

realistic for the number of Information Protection waivers, Anti-Jam Capability Level, 

and the percentage of terminals supported attributes.  

C. EVALUATION OF A SET OF ARCHITECTURES USING THE 
MATHEMATICAL MODEL 

The mathematical model was implemented using an Excel spreadsheet with the 

defined inputs utilized in the model.  

The weighting for the key attributes is shown in Table 1.A set of conditional 

formatting rules is applied to the Weighting Check value such that if the cell has a value 

of one the cell fill will be green. If the cell value is greater or less than 1 the Weighting 

Check box will turn red to indicate an erroneous input. This check is illustrated when the 
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Constellation Restoration Time weight is set to zero as shown in Table 2. The key 

attributes for Communications Capacity and FOC Date were selected to be more 

important than all other attributes, reflected by a weight that is twice the value of the 

other weights. Distributing the weights to the key attributes per this relative importance 

results in the distribution shown in Table 1. 

 

Table 1.   Mathematical Model Weighting Inputs. 

 
 

Table 2.   Mathematical Model Weighting Check Error. 

 
 

Key Attributes Weight
1. Capacity (Gbps) 0.15
2. Nominal Case Access (% terminals supported) 0.08
3. Stressed Case Access (% terminals supported) 0.08
4. Interoperability (# of cross band conversions) 0.08
5. Commandability (days of autonomous operations) 0.08
6. Information Protection (# of policy waivers) 0.08
7. IOC Date (year) 0.08
8. FOC date (year) 0.15
9. Constellation Restoration Time (years) 0.08
10. Launch Vehicle Flexibility 0.08
11. Anti Jam Capability Level 0.08
Weighting check 1.00

Key Attributes Weight
1. Capacity (Gbps) 0.15
2. Nominal Case Access (% terminals supported) 0.08
3. Stressed Case Access (% terminals supported) 0.08
4. Interoperability (# of cross band conversions) 0.08
5. Commandability (days of autonomous operations) 0.08
6. Information Protection (# of policy waivers) 0.08
7. IOC Date (year) 0.08
8. FOC date (year) 0.15
9. Constellation Restoration Time (years) 0.00
10. Launch Vehicle Flexibility 0.08
11. Anti Jam Capability Level 0.08
Weighting check 0.92
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The threshold and objective values for each key attribute are shown in Table 3. 

Additionally, the table shows whether an attribute is to be minimized or maximized. If 

the objective value is larger than the threshold value the attribute is to be maximized; 

otherwise, the attribute is to be minimized. The Criteria Type result is used to error check 

Table 4. 

 

Table 3.   Mathematical Model Threshold and Performance Inputs. 

 
 

The performance inputs generated by the random number generator for each 

attribute are shown in Table 4. The green highlight in the cell for each performance input 

indicates the requirement for the value to meet or exceed the threshold requirement has 

been met. This is accomplished by first comparing the performance input value to the 

threshold requirement. If the key attribute value is to be maximized to meet objective 

performance, the input must be equal to or greater than the threshold value. If the key 

attribute value is to be minimized to meet objective performance, the input must be equal 

to or less than the threshold value. This check is accomplished in Excel by using the 

Excel IF function. The results of the performance check are indicated in a calculation 

section of the spreadsheet with a “Pass” or “Threshold Error.” Table 5 shows the results 

of this intermediate calculation for the model inputs. The highlight in the performance 

input cell is accomplished by utilizing two Excel conditional formatting rules, one that 

colors the cell green if the calculation sheet has a “Pass” in the corresponding system 

attribute cell, and the second to color the cell red if the calculation sheet has a “Threshold 

Error” in the corresponding system attribute cell. Calculations cannot continue until the 

threshold error is resolved by eliminating the system from consideration, adjusting the 

threshold value requirement so that all systems pass, or adjusting the system design so 

that the threshold requirement can be met. 

1. Capacity 
(Gbps)

2. Nominal 
Case 

Access (% 
terminals 

supported)

3. Stressed 
Case 

Access (% 
terminals 

supported)

4. Interoper- 
ability (# of 
cross band 

conversions)

5. Command- 
ability (days 

of 
autonomous 
operations)

6. Information 
Protection (# 

of policy 
waivers)

7. IOC Date 
(year)

8. FOC date 
(year)

9. Constellation 
Restoration 
Time (years)

10. Launch 
Vehicle 

Flexibility

11. Anti-Jam 
Capability 

Level
Threshold 15 0.2 0.3 0 5 5 2025 2030 5 1 5
Objective 50 1 1 12 20 0 2018 2024 0.25 3 1
Criteria Type maximize maximize maximize maximize maximize minimize minimize minimize minimize maximize minimize
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Functionality of each cell’s threshold check was verified. An example of this 

functionality check is illustrated in Tables 6 and 7 where System Concept 3 Capacity, 

System Concept 4 Commandability, and System Concept 7 Anti-Jam Capability Level 

were all set below the threshold level. These values were not used in further model 

calculations. 

Table 4.   Mathematical Model Performance Inputs. 

 
 

Table 5.   Mathematical Model Threshold Error Check Intermediate Calculation. 

 

 
 

Table 6.   Mathematical Model Input Threshold Check Validation Example. 

 
 

1. Capacity 
(Gbps)

2. Nominal 
Case 

Access (% 
terminals 

supported)

3. Stressed 
Case 

Access (% 
terminals 

supported)

4. Interoper- 
ability (# of 
cross band 

conversions)

5. Command- 
ability (days 

of 
autonomous 
operations)

6. Information 
Protection (# 

of policy 
waivers)

7. IOC Date 
(year)

8. FOC date 
(year)

9. Constellation 
Restoration 
Time (years)

10. Launch 
Vehicle 

Flexibility

11. Anti-Jam 
Capability 

Level
System Concept 1 41.95 0.31 0.91 3 13 5 2021 2024 5 4 2
System Concept 2 20.35 0.95 0.77 14 20 5 2018 2027 0.75 2 3
System Concept 3 16.89 0.6 0.75 4 11 4 2019 2030 4 3 4
System Concept 4 17.16 0.72 0.89 8 22 2 2018 2024 1 2 1
System Concept 5 38.05 0.4 0.42 5 20 4 2018 2028 3.25 3 1
System Concept 6 24.24 0.33 0.37 3 10 1 2024 2029 1.25 3 1
System Concept 7 38.85 0.62 0.52 0 6 3 2023 2029 2.75 4 1
System Concept 8 28.34 0.96 0.63 4 18 5 2022 2029 1.25 4 4
System Concept 9 15.84 0.9 0.63 13 20 4 2018 2027 1.5 4 2

1. Capacity 
(Gbps)

2. Nominal 
Case 

Access (% 
terminals 

supported)

3. Stressed 
Case 

Access (% 
terminals 

supported)

4. Interoper- 
ability (# of 
cross band 

conversions)

5. Command- 
ability (days 

of 
autonomous 
operations)

6. Information 
Protection (# 

of policy 
waivers)

7. IOC Date 
(year)

8. FOC date 
(year)

9. Constellation 
Restoration 
Time (years)

10. Launch 
Vehicle 

Flexibility

11. Anti-Jam 
Capability 

Level
System Concept 1 Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass
System Concept 2 Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass
System Concept 3 Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass
System Concept 4 Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass
System Concept 5 Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass
System Concept 6 Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass
System Concept 7 Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass
System Concept 8 Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass
System Concept 9 Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass

1. Capacity 
(Gbps)

2. Nominal 
Case 

Access (% 
terminals 

supported)

3. Stressed 
Case 

Access (% 
terminals 

supported)

4. Interoper- 
ability (# of 
cross band 

conversions)

5. Command- 
ability (days 

of 
autonomous 
operations)

6. Information 
Protection (# 

of policy 
waivers)

7. IOC Date 
(year)

8. FOC date 
(year)

9. Constellation 
Restoration 
Time (years)

10. Launch 
Vehicle 

Flexibility

11. Anti-Jam 
Capability 

Level
System Concept 1 41.95 0.31 0.91 3 13 5 2021 2024 5 4 2
System Concept 2 20.35 0.95 0.77 14 20 5 2018 2027 0.75 2 3
System Concept 3 10 0.6 0.75 4 11 4 2019 2030 4 3 4
System Concept 4 17.16 0.72 0.89 8 1 2 2018 2024 1 2 1
System Concept 5 38.05 0.4 0.42 5 20 4 2018 2028 3.25 3 1
System Concept 6 24.24 0.33 0.37 3 10 1 2024 2029 1.25 3 1
System Concept 7 38.85 0.62 0.52 0 6 3 2023 2029 2.75 4 6
System Concept 8 28.34 0.96 0.63 4 18 5 2022 2029 1.25 4 4
System Concept 9 15.84 0.9 0.63 13 20 4 2018 2027 1.5 4 2
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Table 7.   Mathematical Model Threshold Error Check Intermediate Calculation Validation 
Example. 

 
 

The remaining inputs are the system cost and number of years at FOC. For the 

example all systems will be at FOC for 10 years. This fixed FOC period could represent a 

situation where the next generation system is required to be fielded. The total cost for 

each satellite communication system architecture was generated as a random number 

between $3B and $6B. The inputs for these parameters are shown in Table 8. 

 

Table 8.   Mathematical Model Cost and FOC Duration Inputs. 

  
 

The calculation of the OMOE score occurs in three steps in the spreadsheet. First, 

an uncorrected raw performance score is computed for each attribute using Equation 1. 

The results of this computation are shown in Table 9. This example problem included 

 

 

1. Capacity 
(Gbps)

2. Nominal 
Case 

Access (% 
terminals 

supported)

3. Stressed 
Case 

Access (% 
terminals 

supported)

4. Interoper- 
ability (# of 
cross band 

conversions)

5. Command- 
ability (days 

of 
autonomous 
operations)

6. Information 
Protection (# 

of policy 
waivers)

7. IOC Date 
(year)

8. FOC date 
(year)

9. Constellation 
Restoration 
Time (years)

10. Launch 
Vehicle 

Flexibility

11. Anti-Jam 
Capability 

Level
System Concept 1 Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass
System Concept 2 Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass
System Concept 3 hreshold Erro Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass
System Concept 4 Pass Pass Pass Pass Threshold Error Pass Pass Pass Pass Pass Pass
System Concept 5 Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass
System Concept 6 Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass
System Concept 7 Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Threshold Error
System Concept 8 Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass
System Concept 9 Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass

System Architecture Cost ($B) Years at FOC
System Concept 1 3.6 10
System Concept 2 3.3 10
System Concept 3 4.5 10
System Concept 4 6.0 10
System Concept 5 5.7 10
System Concept 6 3.8 10
System Concept 7 5.1 10
System Concept 8 4.7 10
System Concept 9 4.7 10
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some performance inputs that exceeded the objective level, resulting in a raw 

performance score that is greater than 1.0, such as the Interoperability for System 2 and 

the Commandability for System 4.  

 

Table 9.   Raw Performance Calculation Results. 

 
 

The next calculation step is the correction of the raw performance scores to limit 

the score to a maximum of one. If the raw performance score is greater than 1, it is 

automatically reset to 1 to prohibit systems from benefiting from exceeding objective 

performance. The result of this correction is shown in Table 10. 

 

Table 10.   Corrected Performance Score Calculation Results. 

 

 
 

The weighted score for each performance input is calculated by applying 

Equation 2. The OMOE score is calculated by applying Equation 3. The results of both 

these calculations are shown in Table 11. The OMOE score is highlighted in blue. 

 

1. Capacity 
(Gbps)

2. Nominal 
Case 

Access (% 
terminals 

supported)

3. Stressed 
Case 

Access (% 
terminals 

supported)

4. Interoper- 
ability (# of 
cross band 

conversions)

5. Command- 
ability (days of 

autonomous 
operations)

6. Information 
Protection (# 

of policy 
waivers)

7. IOC Date 
(year)

8. FOC date 
(year)

9. Constellation 
Restoration 
Time (years)

10. Launch 
Vehicle 

Flexibility

11. Anti-Jam 
Capability 

Level
System Concept 1 0.77 0.14 0.87 0.25 0.53 0.00 0.57 1.00 0.00 1.50 0.75
System Concept 2 0.15 0.94 0.67 1.17 1.00 0.00 1.00 0.50 0.89 0.50 0.50
System Concept 3 0.05 0.50 0.64 0.33 0.40 0.20 0.86 0.00 0.21 1.00 0.25
System Concept 4 0.06 0.65 0.84 0.67 1.13 0.60 1.00 1.00 0.84 0.50 1.00
System Concept 5 0.66 0.25 0.17 0.42 1.00 0.20 1.00 0.33 0.37 1.00 1.00
System Concept 6 0.26 0.16 0.10 0.25 0.33 0.80 0.14 0.17 0.79 1.00 1.00
System Concept 7 0.68 0.53 0.31 0.00 0.07 0.40 0.29 0.17 0.47 1.50 1.00
System Concept 8 0.38 0.95 0.47 0.33 0.87 0.00 0.43 0.17 0.79 1.50 0.25
System Concept 9 0.02 0.88 0.47 1.08 1.00 0.20 1.00 0.50 0.74 1.50 0.75

1. Capacity 
(Gbps)

2. Nominal 
Case 

Access (% 
terminals 

supported)

3. Stressed 
Case 

Access (% 
terminals 

supported)

4. 
Interoperabilit

y (# of cross 
band 

conversions)

5. 
Commandabili

ty (days of 
autonomous 
operations)

6. Information 
Protection (# 

of policy 
waivers)

7. IOC Date 
(year)

8. FOC date 
(year)

9. Constellation 
Restoration 
Time (years)

10. Launch 
Vehicle 

Flexibility

11. Anti-Jam 
Capability 

Level
System Concept 1 0.77 0.14 0.87 0.25 0.53 0.00 0.57 1.00 0.00 1.00 0.75
System Concept 2 0.15 0.94 0.67 1.00 1.00 0.00 1.00 0.50 0.89 0.50 0.50
System Concept 3 0.05 0.50 0.64 0.33 0.40 0.20 0.86 0.00 0.21 1.00 0.25
System Concept 4 0.06 0.65 0.84 0.67 1.00 0.60 1.00 1.00 0.84 0.50 1.00
System Concept 5 0.66 0.25 0.17 0.42 1.00 0.20 1.00 0.33 0.37 1.00 1.00
System Concept 6 0.26 0.16 0.10 0.25 0.33 0.80 0.14 0.17 0.79 1.00 1.00
System Concept 7 0.68 0.53 0.31 0.00 0.07 0.40 0.29 0.17 0.47 1.00 1.00
System Concept 8 0.38 0.95 0.47 0.33 0.87 0.00 0.43 0.17 0.79 1.00 0.25
System Concept 9 0.02 0.88 0.47 1.00 1.00 0.20 1.00 0.50 0.74 1.00 0.75
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Table 11.   Weighted Performance Scores and OMOE Calculation Results. 

 

 
 
 

Applying Equation 4, the Cost per OMOE per year at FOC is calculated using the 

OMOE score and the values in Table 8.The Excel “Rank” function is applied to this 

result to graphically show the results, with the highest rank associated with the lowest 

Cost per year at FOC per OMOE and indicated in the Excel generated graded color scale 

where the most preferred system is highlighted in green and least preferred is highlighted 

in red. The results of these calculations are shown in Table 12. 

 

Table 12.   Cost per OMOE per year at FOC Calculation and Ranking Results. 

 
 

 

 

 

1. Capacity 
(Gbps)

2. Nominal 
Case 

Access (% 
terminals 

supported)

3. Stressed 
Case 

Access (% 
terminals 

supported)

4. Interoper- 
ability (# of 
cross band 

conversions)

5. Command- 
ability (days of 

autonomous 
operations)

6. Information 
Protection (# 

of policy 
waivers)

7. IOC Date 
(year)

8. FOC date 
(year)

9. Constellation 
Restoration 
Time (years)

10. Launch 
Vehicle 

Flexibility

11. Anti-Jam 
Capability 

Level OMOE Score
System Concept 1 0.12 0.01 0.07 0.02 0.04 0.00 0.04 0.15 0.00 0.08 0.06 0.59
System Concept 2 0.02 0.07 0.05 0.08 0.08 0.00 0.08 0.08 0.07 0.04 0.04 0.60
System Concept 3 0.01 0.04 0.05 0.03 0.03 0.02 0.07 0.00 0.02 0.08 0.02 0.35
System Concept 4 0.01 0.05 0.06 0.05 0.08 0.05 0.08 0.15 0.06 0.04 0.08 0.71
System Concept 5 0.10 0.02 0.01 0.03 0.08 0.02 0.08 0.05 0.03 0.08 0.08 0.57
System Concept 6 0.04 0.01 0.01 0.02 0.03 0.06 0.01 0.03 0.06 0.08 0.08 0.42
System Concept 7 0.10 0.04 0.02 0.00 0.01 0.03 0.02 0.03 0.04 0.08 0.08 0.44
System Concept 8 0.06 0.07 0.04 0.03 0.07 0.00 0.03 0.03 0.06 0.08 0.02 0.48
System Concept 9 0.00 0.07 0.04 0.08 0.08 0.02 0.08 0.08 0.06 0.08 0.06 0.62

System Architecture Cost ($B) Years at FOC OMOE Score Cost/OMOE/FOCyear Rank
System Concept 1 3.6 10 0.59 0.61 2
System Concept 2 3.3 10 0.60 0.55 1
System Concept 3 4.5 10 0.35 1.30 9
System Concept 4 6.0 10 0.71 0.85 4
System Concept 5 5.7 10 0.57 1.00 7
System Concept 6 3.8 10 0.42 0.91 5
System Concept 7 5.1 10 0.44 1.15 8
System Concept 8 4.7 10 0.48 0.99 6
System Concept 9 4.7 10 0.62 0.76 3
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Example Demonstrating Threshold-Only Performance Handling 

As mentioned previously, there is one special case that may arise from a given set 

of inputs. In the unlikely event a system achieves only threshold levels for all key 

attributes, an OMOE of zero would result and cause a divide by zero error. To avoid this, 

the model replaces the zero value with an OMOE of one half the lowest OMOE of all 

other system architectures being considered.   

To demonstrate how the model handles this special case, an additional system is 

added to the previous example.  The cost of the Threshold Only system architecture was 

generated in the same manner as for the other system architectures, as a random number 

between $3.0B and $6.0B. In this example, the cost of the Threshold Only system 

architecture is $3.9B.Years at FOC matches the others at 10 years. Table 13 shows the 

revised rankings. In this case the Threshold Only option is least preferred. 

 

Table 13.   Cost per OMOE per year at FOC Calculation and Updated Ranking Results. 

 
 

D. DISCUSSION OF RESULTS 

It is acknowledged that decision makers will still have to consider the results of 

the model in concert with other factors that do not lend themselves to incorporation into a 

mathematical model, such as budget constraints, rapidly evolving threats and needs, and 

System Architecture Cost ($B) Years at FOC OMOE Score Cost/OMOE/FOCyear Rank
System Concept 1 3.6 10 0.59 0.61 2
System Concept 2 3.3 10 0.60 0.55 1
System Concept 3 4.5 10 0.35 1.30 9
System Concept 4 6.0 10 0.71 0.85 4
System Concept 5 5.7 10 0.57 1.00 7
System Concept 6 3.8 10 0.42 0.91 5
System Concept 7 5.1 10 0.44 1.15 8
System Concept 8 4.7 10 0.48 0.99 6
System Concept 9 4.7 10 0.62 0.76 3
Threshold Only 3.9 10 0.17 2.25 10
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the level of program risk. An analysis of the results will be necessary to support the final 

decision, with the approach and focus to be defined by the needs of the decision makers. 

While this analysis is based upon fictional inputs, some interesting observations 

can be made about the results.  

1. Comparison to Cost per Capacity Approach 

For comparison to the generally accepted current approach of calculating a cost 

per capacity, the cost was divided by the capacity defined in the performance input for 

each system. This calculation results in a significantly different preference ranking of the 

system architectures as shown in Table 14. The preference from System Concept 2 

changed from 1st to 6th place. System Concept 7 changed from 8th to 2nd place. The 

Threshold Only system moved up from 8th to 3rd place. This result indicates that when a 

satellite communications system architecture has additional requirements beyond the 

system capacity, these other key attributes must be factored into the decision to avoid 

eliminating critical capabilities defined by the users. 

This biasing can be quantifying by varying the cost and capacity to identify when 

the preference raking changes. System Concept 1 is strongly preferred in the Cost per 

Capacity method. The capacity must drop from 42 Gbps to less than 28 Gbps, 33%; or 

the cost must increase from $3.6B to more than $5.5B, 55%, before System Concept 7 

becomes the most preferred system architecture. Decreasing the capacity of System 

Concept 1 to less than 28Gbps does not change the 2nd place preference in the Cost per 

OMOE per year at FOC Calculation. Increasing the cost of System Concept 1 to $5.6B 

changes the preference from 2nd to 5th place. This biasing is significant, and again 

ignores the benefits of all other key system requirements, resulting in the likely selection 

of a system architecture solution that is not optimized for either cost or performance. 
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Table 14.   Cost per Capacity Calculation and Ranking Results. 

 

2. Threshold Only Concept Addition 

The addition of the Threshold Only system concept does not affect the ranking of 

any other system architecture. All other systems are more preferred. Adjustment of the 

Threshold Only system OMOE shows that the rankings do not change until the Threshold 

Only OMOE is at least 87% of the lowest OMOE score, that of System Concept 3.  If the 

Threshold Only system OMOE is made equal to that of System Concept 3 the ranking of 

the Threshold Only system will increase to 8th place which remains well out of range of 

the most preferred system concepts. None of the system concepts in this example have 

more than one key attribute that is at the threshold performance level, and as such there is 

relevant benefit to achievement of performance above the threshold level. In light of this 

it would be more appropriate to decrease the OMOE score of the threshold only system 

relative to System Concept 3. A comparison of all Cost per OMOE per year at FOC 

arranged from lowest to highest is shown in Figure 1. 

 

 

 

 

 

System Architecture Cost/Capacity Cost/Capacity Rank
System Concept 1 0.08582 1
System Concept 2 0.16216 5
System Concept 3 0.26643 8
System Concept 4 0.34965 10
System Concept 5 0.14980 3
System Concept 6 0.15677 4
System Concept 7 0.13127 2
System Concept 8 0.16584 6
System Concept 9 0.29672 9
Threshold Only 0.26000 7
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Figure 1.   Cost per OMOE per year at FOC Summary. 

 

 

3. Performance Score and Cost Comparisons 

The preference rankings clearly show that more performance at any cost is not the 

best value solution. Cost is considered as independent variable and accounted for in the 

system trades. In this example, we see how system cost is the dominating factor in 

determining the preferred solution.  The small cost or OMOE changes don’t influence the 

rankings significantly.  

The highest OMOE score belongs to System Concept 4, the system that is ranked 

4th in preference, and is 0.11, or 18%, higher than the score for System Concept 2.  

System Concept 4 is also the most expensive system and $2.7B, or 82%, more than 

System Concept 2. The 82% cost difference dominates the 18% performance benefit. 

Similarly, for comparing System Concept 9 to System Concept 2, the 2% OMOE 

performance benefit is dominated by the 42% higher cost of System Concept 9. In both 

instances cost will need to be decreased for this solution to become competitive with 

System Concept 2.  

The OMOE score for System Concept 2 is 0.02, or 2%, higher than for System 

Concept 1, the system ranked 2nd in preference. Additionally, System Concept 1, the 
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system ranked 2nd in preference, is $0.3B, or 9%, more than System Concept 2. System 

Concept 2 has more capability at a lower cost, thus it makes sense it is preferred over 

system Concept 1. 

4. Performance Score and Cost Variation 

A simple sensitivity analysis of the cost input indicates that for System Concept 2 

cost must increase by $0.4B (12%) to $3.7B, or the OMOE score must decrease by 0.07 

(12%) to 0.53 to change the preference rank from first to second place. This variation is 

consistent with the differences described in the previous section. Similarly, a net change 

in cost and performance between System Concepts 2 and 9 of at least 40% would need to 

be accomplished for System Concept 9 to become the most preferred.  

In an actual system the cost and OMOE score are likely to be related and 

decreased cost will result in decreased capability. These relative changes, while outside 

the scope of this thesis, must be considered in the detailed sensitivity analysis for real 

application.   

It is possible that the system architecture threshold requirements are based on 

existing systems, and because these systems would have little to no development cost, a 

Threshold Only solution would be one that has significantly lower cost than the other 

system architectures. In order to be the most preferred solution the maximum cost of the 

Threshold Only system is $0.9B, or 73% lower than the cost of System Concept 2. 

The Threshold Only system is not competitive with eight of the nine system 

concepts. This is despite having a cost that is already 40% lower than the next least 

expensive concept. To become the most preferred concept the cost would have to 

decrease an additional $1.1 (55%), down to $0.9B, or the OMOE score would have to be 

increased to 0.37 (206%).  It must be noted that an OMOE score of 0.38 would exceed 

the score achieved by System Concept 2 which had performance above threshold in 10 of 

the 11 key performance attributes. 
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5. Attribute Weighting Effect 

To check the effect of the selected attribute weighting an analysis was run with all 

attributes weighted equally at 1/11. The results are shown in Table 15, with the most 

preferred concept remaining unchanged (System Concept 2). The cost per OMOE per 

year at FOC for System Concept 1 increased significantly from 0.61 to 0.78 (27%) and 

fell in preference to 3rd place, indicating the benefit gained with the emphasis on 

Capacity and the year FOC is achieved through their increased weighting.  

 

Table 15.   Cost per OMOE per year at FOC Calculation and Ranking Results with Equally 
Weighted Performance Attributes. 

 
 

6. Variation of the FOC Period 

The time at FOC for the model has been set to a constant of 10 years. To analyze 

the effect of making varying this input new values for all concepts have been replaced 

with a random value between 8 and 11. The results are shown in Table 16. While there 

are some changes in ranking, System Concept 2 remains the most preferred, even with 

the increased cost per OMOE per year at FOC. 

7. Range of Variation of the Cost 

It may be argued that the cost variation in the example at a factor of 2 is too large 

and biasing the results. To address this concern the existing cost variations were mapped 

from the $3–6B range over to a $3–4B range. This would maintain the cost comparisons 

System Architecture Cost ($B) Years at FOC OMOE Score Cost/OMOE/FOCyear Rank
System Concept 1 3.6 10 0.53 0.78 3
System Concept 2 3.3 10 0.65 0.50 1
System Concept 3 4.5 10 0.40 1.28 9
System Concept 4 6.0 10 0.74 0.80 4
System Concept 5 5.7 10 0.58 1.08 7
System Concept 6 3.8 10 0.46 0.94 5
System Concept 7 5.1 10 0.45 1.36 10
System Concept 8 4.7 10 0.51 1.07 6
System Concept 9 4.7 10 0.69 0.76 2
Threshold Only 2 10 0.20 1.14 8
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between system concepts, but decrease the total input cost, and as such the ratio of cost to 

OMOE. The results are shown in Table 17. 

This change in range does have an effect on the ranking of the third through 

seventh place concepts, it is still not sufficient to change the results for the two most 

preferred solutions. This result shows that the smaller the range of variation is on the 

cost, the more meaningful the variation of the OMOE will become in the decision making 

process. 

 

Table 16.   Revised Ranking With a Variable FOC Period. 

 
 
 

Table 17.   Revised Ranking With a Reduced Cost Variation Range. 

 

 

System Architecture Cost ($B) Years at FOC OMOE Score Cost/OMOE/FOCyear Rank
System Concept 1 3.6 8 0.59 0.76 3
System Concept 2 3.3 8 0.60 0.69 1
System Concept 3 4.5 9 0.35 1.44 9
System Concept 4 6.0 10 0.71 0.85 4
System Concept 5 5.7 11 0.57 0.91 6
System Concept 6 3.8 10 0.42 0.91 5
System Concept 7 5.1 10 0.44 1.15 8
System Concept 8 4.7 9 0.48 1.10 7
System Concept 9 4.7 10 0.62 0.76 2
Threshold Only 3.9 10 0.17 2.25 10

System Architecture Cost ($B) Years at FOC OMOE Score Cost/OMOE/FOCyear Rank
System Concept 1 3.2 10 0.59 0.54 2
System Concept 2 3.1 10 0.60 0.52 1
System Concept 3 3.5 10 0.35 1.01 9
System Concept 4 4.0 10 0.71 0.56 3
System Concept 5 3.9 10 0.57 0.69 5
System Concept 6 3.3 10 0.42 0.78 7
System Concept 7 3.7 10 0.44 0.83 8
System Concept 8 3.6 10 0.48 0.75 6
System Concept 9 3.6 10 0.62 0.58 4
Threshold Only 3.3 10 0.17 1.91 10
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E. CHAPTER SUMMARY 

This chapter has discussed the application of the mathematical model in an 

example communications satellite system architecture trade study. A set of nine different 

system architectures and eleven key attributes were investigated. The model was 

implemented in an Excel workbook. Performance values were created by a random 

number generator, and the calculation results were presented and discussed. A 

comparison of the mathematical model results to the traditional cost per capacity 

calculation shows that there can be different recommended solutions for the two 

approaches. This difference in results shows that if other key system attributes are 

ignored it is likely that a system architecture solution will be selected that is not 

optimized for either cost or performance. 
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IV. CONCLUSIONS AND RECOMMENDATIONS 

This chapter presents a summary of the work described in this thesis and 

identifies areas for further research. 

A. CONCLUSIONS AND RECOMMENDATIONS 

The purpose of this thesis was to implement a mathematical model for assessing 

communications satellite system architectures based on the satisfaction of multiple 

performance attributes.  To this end the following three questions have been addressed: 

1. What are the key quantifiable architectural attributes that contribute to 

meeting the users’ requirements of a communications satellite? 

2. What is an appropriate mathematical model for evaluating communications 

satellite architectures? 

3. How can such a mathematical model be applied to the assessment of a 

communications satellite architecture? 

Satellite based communications provide a crucial capability to the U.S. military in 

the execution of their many missions. System architectures are developed based on a set 

of requirements that define the capabilities needs. Traditionally the selection of a 

communications satellite systems architecture solution is based upon the evaluation of a 

single criterion: the cost per unit of system communication capacity. This selection 

approach disregards the other key system design requirements and can result in the 

selection of an architectural solution that does not reflect other system attributes the 

stakeholders may consider significant. To address this shortcoming, a mathematical 

model to assess multiple attributes simultaneously was implemented. 

A survey of candidate system parameters for inclusion into a mathematical model 

for trade study analysis of candidate communications satellite architectures was 

conducted. The five identified potential key attributes are: communications capacity; 

access; interoperability; commandability; and information assurance and protection. Due 

to the commonality with current trade analyses and commercial leasing metrics, the 
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communications capacity attribute should be considered applicable to all system 

architecture trade analyses. Additional key attributes should be utilized in the 

mathematical model based on the defined requirements for the system, such as KPPs, 

TPMs, and overarching requirements. 

Three mathematical model approaches were discussed. The selected approach is a 

combination of two of them and enables a comparison of the cost for achieved 

performance level. This approach leveraged three mathematical model benefits: 1) the 

ability for stakeholders to weight the relative importance of all key attributes utilized in 

the model; 2) a calculation of raw scores to measure the performance of each key 

attribute across system architectures; and 3) consideration of the total system cost for 

each system architecture. 

The inputs, output, and calculation methodology of the selected mathematical 

model were presented. The output of the mathematical model is a cost per year at FOC 

per Overall Measure of Effectiveness (OMOE) score. The lower the cost per OMOE 

score, the more preferred the system architecture is relative to the others under 

consideration. This results in a metric for decision makers to utilize in their system 

architecture selection where the annualized cost per unit of performance is minimized.  

The mathematical model was applied to an example communications satellite 

system architecture trade study. A set of nine different system architectures and eleven 

key attributes were investigated. The model was implemented in an Excel workbook and 

performance values were created by a random number generator within the bounds of 

expected values for a fictitious system.  The output of the mathematical model showed 

the lowest cost per capability can be lower than the cost per capacity. The difference in 

results supports applying the crucial step of accounting for additional key system 

attributes when selecting a communications satellite system architecture. 

This model is intended to aid decision makers in a system architecture selection 

process. Decision makers will still have to consider the results of the model in concert 

with other factors that do not lend themselves to incorporation into a mathematical 

model, such as budget constraints, rapidly evolving threats and needs, and overall level of 
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program risk. An analysis of the results will be necessary to support the final decision, 

with the approach and focus to be defined by the needs of the decision makers. It is also 

possible that the results of this approach may yield a result that is not different from that 

produced by the traditional cost per capacity approach. In this case, this approach would 

be a validation of the traditional approach. 

B. AREAS FOR FURTHER RESEARCH 

There are a number of areas where this research could be expanded in further 

research as a result of this effort. Three possibilities are suggested. 

The mathematical model could be applied to existing or proposed system 

architecture to determine if there is any difference between the system selected by the 

traditional cost per capacity method and this multi-attribute mathematical model. This 

effort would include identification of the key attributes, determination of appropriate 

weightings based on inputs from stakeholders, execution of the mathematical model, and 

an analysis of the results. This research could help to demonstrate the utility of the 

mathematical modeling approach. 

Another potential research area would be the expansion of the model to 

accommodate more complex types of functionalities between the satellites in the system 

architecture and the user terminals. This would enable the modeling of a more complex 

solution that includes a variety of different elements assembled to create an integrated 

system architecture solution. Examples of such an architectural solution include:  

satellites of differing capabilities and in different orbits to provide full earth coverage; a 

mix of military satellites and commercially leased capacity; and the inclusion of 

atmospheric assets such as balloons and aircraft. 

The mathematical model can be expanded to handle time-varying values, such as 

the time value of money, or even statistically varying inputs. This type of analysis could 

provide an even more relevant outcome for use by the stakeholders. 
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